Kamis, 09 Oktober 2014

Strategies for Teaching Students with Disabilities






Strategies for Teaching Students with Disabilities
As with other unique characteristics of students, a few basic principles can help teacher teach science to children with disabilities. The first is the process oriented inquiry methodology. This methodology embodies those factors that are necessary for teaching all children, including those with disabilities. These factors include (1) concrete, hands on learning experience; (2) reduced need for reading and writing skills; (3) involvement in group interactions and group activities; (4) providing for individual differences; and (5) encouraging areas of interest and inquisitiveness (Caseau & Norman, 1997).
Research has shown that inquiry is a successful method for teaching students with disabilities. Brown (2006) showed that elementary science that focused on inquiry resulted in marked improvement in science achievement on the part of both students with special needs and regular students. McCharthy found that middle school students with serious emotional disturbances who studied science using a hands on program performed significantly better than the comparison students in a traditional, textbook oriented program. Lynch, et al (2007) observed students in inclusionary eighth grade classroom as they studied a unit on chemistry and found that booth students with disabilities and regular students who used the guided inquiry approach exhibited significantly better achievement than those in the comparison group who did not use that approach.
Anoter strategy that has been shown to be effective with students with disabilities is the Science Technology Society (STS) curriculum model (Caseau & Norman, 1997). In this model, teachers develop studies around problems and issues of interest to the topic under study.
Specific accommodations for adapting science instruction for children with disabilities
1. Prepare materials to be explicit. specific, and delivered in small bites.
2. Ensure that children have previously achieved the skills and understandings they need.
3. Demonstrate procedures while giving directions.
4. Develop written or pictorial cue cards on directions and display them in the proper order.
5. Modify reading levels to meet the capabilities of the children.
6. Use the large print.
7. Use graphic organizers
8. Identify and define any vocabulary words that may come up.
9. Provide consistent feedback
10. Allow students to improve and resubmit assignments
11. Encourage children to demonstrate their competencies through various means.
12. Modify assessments so students with disabilities can demonstrate their understanding and achievement.
13. Modify equipment and materials to sure all children can use them
14. Provide assistive and adaptive technology resources
15. Enlarge aisles and areas of movement to accommodate all children
Material and Equipment for students with disabilities
In some cases, instructional materials need to be adapted to meet the need of students with disabilities. Some adaptations are inexpensive or free, such as putting rubber expanders on pencils to make them easier to hold, making a variety of pictures and drawings available to assist in conceptual understanding, putting up signs to help students wits vision impairments, providing clipboards to serve as tilting desktops, providing “sensory” stories, and the like (Leatherman, 2006). Other adaptations are expensive such as ergonomic technology workstations, wheelchairs, slant boards, angled writing surfaces, automatic page turner, computer screen readers, and a whole range of assistive and adaptive technological hardware and software.
It all this sounds familiar, it should. The research on teaching science to children with disabilities suggests using learning strategies that center on open ended, inquiry oriented, problem solving investigations, that are challenging to children and require their cognitive engagement. The learning experiences should be tailored to meet the needs of each individual child, including those with disabilities. This is the essence of the process oriented inquiry method of instruction. From the constructivist viewpoint, teaching all children with disabilities is seen as a special case of teaching all children rather than as a special problem requiring a special methodology.
Above all, it is the attitude of the teacher that encourages children with special needs to succeed in science

David Jerner Martin. 2009. Elementary Science Methods: A Conctructivist Approach. USA: Wadsworth Cengage Learning.

Selasa, 18 Juni 2013

REFLEKSI "The FOURTH DIMENSION _ By Marsigit"



Secara berurutan, dimensi satu sampai empat ialah titik-bidang-ruang-waktu dan spiritual. Para ahli mengemukakan pendapatnya mengenai dimensi ke empat berdasarkan pandangannya masing-masing. Menurut Oldani, dua alam semesta, jika mereka berpotongan, akan berpotongan di bidang, hal ini adalah masuk akal karena dua garis berpotongan pada titik, dua bidang berpotongan pada garis, sehingga dua alam semesta berpotongan di bidang. Kemudian ia melihat dari dimensi ke empat, setiap titik dalam objek tiga dimensi akan terlihat, satu hal lain, objek dimensi empat pada alam semesta kita akan muncul sebagai objek tiga dimensi dengan bentuk dan warna yang berubah karena melewati alam semesta. Saat melewati alam, objek itu akan menyusut ke titik dan menghilang. Sedangkan masyarakat Jawa mendefinisikan dimensi empat dari sudut pandang spiritual yaitu mengenai hubungan manusia dengan tuhan dalam dimensi ruang dan waktu.

REFLEKSI "Elegi Menggapai "Ontological Foundation of Mathematics"



Ontologi adalah ilmu yang mempelajari realitas atau kenyataan konkret secara kritis, sifat menjadi, keberadaan, serta kategori dasar keberadaan dan hubungan mereka. Beberapa aspek ontologi pada ilmu matematika yaitu metodis, sistematis, koheren, rasional, komprehensif, radikal, universal.
Terdapat dua kelompok pendapat tentang matematika diantaranya:
1.    Beberapa teori cenderung untuk berfokus pada praktek matematika dan bertujuan untuk mendeskripsikan dan menganalisis kerja yang sebenarnya dari matematikawan sebagai kelompok sosial.
2.    Lainnya mencoba untuk membuat ilmu kognitif matematika, berfokus pada kognisi manusia sebagai asal keandalan matematika ketika diterapkan ke 'dunia nyata'. Dari dua pendapat itu muncul beberapa opini dari ilmuwan-ilmuwan seperti Plato, Aristoteles, Leibniz, Frege, Rusell dan lainya.

REFLEKSI "METAPHYSICS_By Marsigit"



Menurt Kant, seluruh sistem metafisika terdiri dari empat bagian utama:
1. Ontologi;
2. Rasional Fisiologi;
3. Rasional kosmologi, dan
4. Teologi rasional.
Kant juga menyatakan bahwa aturan pemahaman tidak hanya benar secara apriori, tetapi bersumber dari semua kebenaran, yaitu sesuai dengan kognisi kita dengan benda-benda yang ada di muka bumi ini.